Lotus Evora 414E Hybrid Concept



The Lotus Evora 414E Hybrid Concept, so-named because this latest environmentally-focused technology demonstrator from Lotus Engineering produces 414 PS (306 kW) of power, promises breathtaking performance from a highly efficient propulsion system. The concept showcases new developments in plug-in, range-extended electric propulsion, new electronic technologies to enhance driver involvement, the adaptability of the Lotus Versatile Vehicle Architecture (VVA) that underpins the Lotus Evora 414E Hybrid and a dramatic new roof system and interior concept from Lotus Design. Through all of these aspects it ultimately demonstrates the exceptional ability of Lotus Engineering to integrate and develop advanced technologies for exciting, efficient, high performance niche vehicles.



The range extended electric drive of the Lotus Evora 414E Hybrid consists of two electric motors driving each of the rear wheels independently via single speed geartrain, integrated into a common transmission housing, thus enabling torque vectoring for stability control of the vehicle. Electrical power is stored in a lithium polymer battery pack optimised for energy density, efficiency and high power demand, mounted in the centre of the vehicle for stability and safety. Additional range is provided by the Lotus Range Extender engine, an optimised 1.2 litre, three-cylinder engine, designed specifically for series hybrid vehicles. The drivetrain is designed to combine astonishing performance with efficient, low emissions driving.


Driver involvement is enhanced by the incorporation of HALOsonic Internal and External Electronic Sound Synthesis technologies from Lotus and Harman International, which provide sound contouring within the cabin and improve pedestrian safety outside the vehicle. Integrated with the HALOsonic technology, the Lotus Evora 414E Hybrid also showcases a brand new technology from Lotus Engineering, a sports mode that simulates a 7 speed, paddle shift transmission that combines exceptional driver involvement for a hybrid sports car and optimised energy recuperation.

The Lotus Evora 414E Hybrid has been designed to highlight Lotus' innovative electric and hybrid vehicle technology without distracting from the pure sportscar character of the Evora. The solution is innovative, instantly recognizable, beautiful and sporty. It demonstrates Lotus DNA.


For the Lotus Evora 414E Hybrid Concept, Lotus Engineering has developed a highly efficient, high performance drivetrain system consisting of twin motors each limited to providing 152 kW (207 PS/204 hp) of power and 400 Nm (295 lb-ft) of torque to each wheel via independent, single speed, reduction transmissions integrated into a single housing, enabling torque vectoring dynamic control of the vehicle.

The vehicle energy storage system is made up of the latest Lithium Polymer battery chemistry providing 17 kWH energy storage capacity. The battery pack is optimised for energy density, efficiency and high power demand, with over 100 kW discharge capability.

The Lotus Range Extender engine provides 35 kW (48 PS/47 hp) of power at 3,500 rpm via the integrated electrical generator and features an innovative architecture comprising an aluminium monoblock construction, integrating the cylinder block, cylinder head and exhaust manifold in one casting. This results in reduced engine mass, assembly costs, package size and improved emissions and engine durability. The engine uses an optimised two-valve, port-fuel injection combustion system to reduce cost and mass and can be operated on alcohol-based fuels and/or gasoline. The generator converts mechanical energy to electrical energy to replenish the battery pack charge and provides additional vehicle range in a small light weight package. The generator is also used as a motor to start the range extender engine. The low mass of the range extender unit (85 kg) and compact package makes it ideal for the series hybrid drivetrain in the Lotus Evora 414E Hybird.


The Lotus Evora 414E Hybrid Concept provides less of a psychological step change for people familiar with high performance cars compared to other electric and hybrid sports cars. The car has a simulated paddle shift gear change offering ultra quick gear changes reminiscent of a dual clutch transmission, while actually single speed. This enhances the driver interaction with the vehicle and provides a driving experience similar to current internal combustion engine high performance sports cars. The Lotus Evora 414E Hybrid uses a column mounted paddle shift to simulate the gear change and a synthesised engine sound changes frequency with virtual gear selection. The drive torque is also modulated to simulate a physical feeling of a gearshift jolt.

The virtual gearshift simulation, like a conventional gearbox, is used to change the driving characteristics and response of the vehicle. The most significant aspect that this offers the driver is the ability to control the vehicle deceleration by simulating engine braking through a virtual downshift in gears. Unlike true engine braking, the Lotus system does not dissipate the energy of the moving vehicle through internal engine friction but uses the electric motors to regenerate the energy back into the battery. While many electric and hybrid vehicles provide engine braking, this is generally at a fixed rate or preselected rate. In some driving situations this can either be too aggressive, slowing the vehicle unnecessarily, or too light, requiring additional braking application. The Lotus system effectively allows the driver to select the appropriate level of regeneration by simulating stepping down by one, two or even three gears. The simulation of engine braking through both the gear noise change and the retardation of the vehicle is fully intuitive to a driver familiar with a conventional gearbox. The simulated gearchange capability can be selected for greater driving involvement or switched off for more relaxed driving.